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In my last post I mentioned that first Čech cohomology classes of a sheaf G of (maybe non-abelian) groups
admit a geometric interpretation in terms of G-torsors. In this post I am going to introduce the notion of a
G-torsor over a topological space X, and show how the set of equivalence classes of G-torsors on X can be
identified with H1(X,G).

The action groupoid

Before I talk about torsors, let me introduce a very simple concept, but that will be very useful in this and
other posts. Take any left action G× S → S of a group G on a set S. To this action we can associate its
action groupoid, which is the category [S,G] whose objects are precisely the elements of the set S and, for
every x, y ∈ S, the set of morphisms from x to y is

Mor[S,G](x, y) = {g ∈ G : g · x = y}.

This is clearly a groupoid since every morphism g is an isomorphism, with inverse given by g−1. The moduli
set of this category (that is, its set of isomorphism classes) is simply the set of orbits S/G.

In the last post we saw an example of a group action. Recall that for any open covering U of a topological space
X and for any sheaf of groups G over X, we had that an action of 0-cochains on 1-cochains by “conjugation”:

C0(U,G)× C1(U,G) −→ C1(U,G)
((fU )U∈U, (gUV )U<V ∈U) 7−→ (fUgUV f

−1
V )U<V ∈U.

Moreover, we saw that this action respects cocycles. Now, as in the last post, we can use refinement maps to
define the sets C0(X,G), C1(X,G) and Z1(X,G) as limits by refinement. Suppose that we have some element
of Z1(X,G) represented by a pair (U, g), with g ∈ Z1(U,G) and some element of C0(X,G) represented by
another pair (V, f). We can take a common refinement of both open covers by defining

W = {U ∩ V : U ∈ U, V ∈ V}
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(which is of course an open cover, since every point is in some U and in some V ) with refinement maps given
by

W −→ U

U ∩ V 7−→ U

(analogously for W→ V). Thus, for the previously chosen elements we can take representatives g ∈ Z1(W,G)
and f ∈ C0(W,G) and define

f · g = (fUgUV f
−1
V )U<V ∈W.

In conclusion, we have just defined an action of the group C0(X,G) in the set Z1(X,G) (of course, in the
same way we can define an action on C1, but we are particularly interested in this one). Moreover, the good
properties of the direct limit guarantee that the set of orbits is precisely H1(X,G).

We can now consider the action groupoid [Z1(X,G), C0(X,G)] associated to this action, whose moduli set is
the Čech cohomology set H1(X,G). What we are going to do now is to give an interpretation of this action
groupoid in terms of G-torsors.

Torsors

As above, let X be a topological space and G a sheaf of groups over X.

Definition 1. A G-torsor is a sheaf of sets F on X endowed with an action G × F → F such that

1. whenever F(U) is nonempty, the action G(U)×F(U)→ F(U) is free and transitive, and

2. for every x ∈ X, the stalk Fx is nonempty.

A morphism of G-torsors F → F ′ is simply a morphism of sheaves compatible with the G-actions (we say
that it is G-equivariant).

More precisely, given a morphism of G-torsors ϕ : F → F ′, being G-equivariant means that, if F(U) is
nonempty, for every p ∈ F(U) we have

ϕU (g · p) = g · ϕU (p).

The best way to unravel this definition is by looking at examples. The simplest example of a G-torsor is the
trivial G-torsor, which is F = G with the natural action given by the group operation. A key fact is now the
following:

Proposition 1. Let F be a G-torsor. If F admits a global section, that is, if F(X) is nonempty, then it is
isomorphic to the trivial G-torsor.

Proof. Choose f ∈ F(X). Since f |U ∈ F(U) for every open subset U ⊂ X, the action G(U)×F(U)→ F(U)
is free and transitive. Therefore, every hU ∈ F(U) can be written in a unique way as hU = gU · f |U , for
gU ∈ G(U). Thus, the map

F(U) −→ G(U)
hU 7−→ gU ,
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which is clearly equivariant, defines a sheaf isomorphism. �

Note now that since for every x ∈ X, we have that Fx 6= ∅, there is an open cover U of X such that, for
every U ∈ U, the set F(U) is nonempty. Therefore, on every U ∈ U, the sheaf F|U is isomorphic to the trivial
G|U -torsor. In conclusion, what property 2 in the definition of G-torsor actually means is that every G-torsor
is, in some way, “locally trivial”. The open cover U is called a trivializing cover.

There are other examples of of G-torsors that the reader could be familiar with. To introduce these examples,
first consider a topological group G. Associated to this group we can define two different sheaves. One is the
sheaf of G-valued functions, which we denote simply by G, and is defined by

G(U) = {Continuous maps U → G}.

The other one is the sheaf of locally constant G-valued functions, denoted by G, and defined by

G(U) = {Continuous maps U → G that are locally constant}.

Note that these two sheaves are essentially different, although they coincide if the group G is endowed with
the discrete topology. Now, G-torsors are best known as principal G-bundles (or rather, as their sheaves of
sections). On the other hand G-torsors can be identified with G-covering spaces. I will say a lot about these
two examples in future posts. If the reader is familiar with principal bundles, maybe it is useful for them to
think of a G-torsor as a generalization of a principal bundle in the sense that the structure group depends
continuously on the base point.

Now, let us see how there is a groupoid naturally associated with G-torsors:

Proposition 2. Every morphism of G-torsors is an isomorphism.

Proof. Consider ϕ : F → F ′ a morhpism of G-torsors. First, we will see that the map is injective. Suppose
that there are p1, p2 ∈ F(U) such that ϕU (p1) = ϕU (p2). Since the action on F(U) is transitive and free,
there exists a unique g ∈ G(U) such that p1 = g · p2 and, since ϕ is equivariant, ϕU (p1) = g · ϕU (p2). But
the group G(U) also acts freely and transitively on F ′(U), so g = 1 and p1 = p2. On the other hand, to see
that it is surjective take any element p ∈ F(U). Since the action is transitive we can write any other element
p′ ∈ F(U) as p′ = g · ϕU (p), for some g ∈ G(U). Therefore, since ϕ is equivariant, p′ = ϕU (g · p). �

What we have just shown is that if we consider the category whose objects are G-torsors and whose morphisms
are morphisms of G-torsors, this category is in fact a groupoid. The main purpose of this post is to show
that this groupoid is equivalent to the action groupoid [Z1(X,G), C0(X,G)]. In particular, this equivalence
will yield a bijective correspondence between isomorphism classes of G-torsors and cohomology classes in
H1(X,G).

Transition functions

The way to obtain a Čech cocycle from a G-torsor is by considering transition functions. Consider a G-torsor
F and a trivializing cover U of F . Now, pick a section sU ∈ F(U) on each U ∈ U (I guess you need to use the
Axiom of Choice here, but who cares –besides, we already used it to define cochains–). Now, for every two
open sets U, V ∈ U, since the action of G(U ∩ V ) on F(U ∩ V ) is transitive, there must exist some cochain
g = (gUV )U<V ∈U ∈ C1(U,G) such that

sU |U∩V = gUV sV |U∩V .

Moreover, this cochain is a cocycle since

gUV gV W sW = gUV sV = sU = gUW sW .
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Thus, to any G torsor F we can associate a cocycle g ∈ Z1(U,G) for some open cover U of X. This cocycle is
called a set of transition functions of F .

The choice of transition functions is not canonical, since it depends on the choice of the sections sU . However,
if we pick other sections s′U ∈ F(U) on each U ∈ U, since the action is transitive, we can write each s′U as
s′U = fUsU , for some fU ∈ G(U). Therefore, if we consider the cocycle g′ defined by s′U = g′UV s

′
V , we have

fUsU = s′U = g′UV s
′
V = g′UV fV sV ,

so g′UV = fUgUV f
−1
V . The same argument shows that if ϕ : F → F ′ is a morphism of G-torsors, and given a

choice of the sU and thus of the cocycle g, this cocycle and the cocycle g′ determined by the ϕU (sU ) are
related by a cochain f ∈ C0(U,F) in the same way, g′UV = fUgUV f

−1
V .

By choosing a trivializing cover for any G-torsor and a set of transition functions, after taking the equivalence
class in the direct limit we can define a morphism of groupoids by the following functor

{G-torsors} −→ [Z1(X,G), C0(X,G)]
F 7−→ {Transition functions of F},

which maps any morphism of G-torsors to the 0-cochain defined above.

Proposition 3. This functor is an equivalence of categories. In particular, the set H1(X,G) classifies
isomorphism classes of G-torsors.

Proof. Clearly, the functor is fully faithful since the choice of open covering U and of fU ∈ G(U), for U ∈ U
determines ϕ as ϕU (sU ) = fUsU , for sU ∈ F(U). Thus, it suffices to see that the functor is essentially
surjective. This means that what we have to show is that given a cocycle in Z1(X,G), we can construct a
G-torsor whose transition functions are given by this cocycle. The way of doing this is a standard procedure
which appears in a lot of places. The idea is to define the torsor locally as G and then use the cocycle to “glue”
the different patches. More precisely, we choose a representative (U, g), with g ∈ Z1(U,G), of the chosen
cocycle and define a presheaf

F(U) =
∐

V ∈U

G(U ∩ V )/ ∼,

with the equivalence relation ∼ given as follows. We say that two sections f ∈ G(U ∩ V ) and f ′ ∈ G(U ∩ V ′),
with V ∩ V ′ 6= ∅, are related if

f |U∩V ∩V ′ = gV V ′f ′|U∩V ∩V ′ .

This presheaf verifies the sheaf condition by construction and it is a G-torsor since on every U ∈ U it is the
trivial G-torsor. Again by construction, the cocycle g gives the transition functions of F . �

A nice application

For the well known cases associated to G topological group, the above result is telling us that (isomorphism
classes of) prinicipal G-bundles are classified by the cohomology set H1(X,G) and that G-covering spaces
are classified by H1(X,G).

In a future post, I will explain how the correspondence between G-covering spaces and H1(X,G) gives a nice
and maybe “non-standard” approach at the basic results of Algebraic Topology. As for now, I am going to
show how the correspondence between principal G-bundles and H1(X,G) can be combined with the results
of my last post to prove a nice fact of principal bundle theory.
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What we are going to consider now is the problem of lifting the structure group to a group extension.
In general, for any group G we say that another group Ĝ is an extension of G if there is a surjective
homomorphism Ĝ→ G. More generally, if 1→ A→ Ĝ→ G→ 1 is a short exact sequence of groups, we say
that Ĝ is an extension of G by A. Moreover, if the homomorphism A→ Ĝ factors through the centre of Ĝ,
we say that the extension Ĝ is a central extension. In particular, if Ĝ is a central extension, the group A is
abelian.

The lifting problem consists on, given a central extension 1→ A→ Ĝ→ G→ 1 and a principal G-bundle E
over a topological space X, constructing a principal Ĝ-bundle Ê “lifting” E. In our terms, we can regard
Ĝ → G as a morphism of sheaves, that induces a map H1(X, Ĝ) → H1(X,G). What we want to know is
when this map is surjective. Recall now from my last post that, since A is abelian, H2(X,A) is defined and
the short exact sequence 1→ A→ Ĝ→ G→ 1 induces in cohomology the exact sequence

H1(X, Ĝ)→ H1(X,G)→ H2(X,A).

Therefore, the map H1(X, Ĝ)→ H1(X,G) is surjective if and only if H2(X,A) is trivial.

Example. A nice example where this lifting problem is interesting is given by spin structures. Let X be an
n-dimensional Riemannian manifold. Its tangent bundle TX is a vector bundle and, by considering its frame
bundle we can regard it as a principal GL(n,R)-bundle. Now, the Riemannian metric gives a reduction of
the structure group to a principal SO(n)-bundle. A spin structure on X is a lift of the structure group from
this principal SO(n)-bundle to the universal covering space Spin(n)→ SO(n). It is well known that SO(n) is
doubly connected. For example, SO(3) is diffeomorphic to the real projective space RP3 and Spin(3) = SU(2)
is diffeomorphic to the 3-sphere S3. Therefore, the covering homomorphism Spin(n) → SO(n) is in fact a
central extension

1→ Z/(2)→ Spin(n)→ SO(n)→ 1.

We conclude from this that the obstruction for defining spin structures n X will be given by its Čech
cohomology set H2(X,Z/(2)). If g ∈ H1(X,SO(n)) denotes the cocycle associated to the tangent bundle,
the element δ(g) ∈ H2(X,Z/(2)) is called the second Stiefel-Whitney class of X, denoted ω2(X). We will be
able to define a spin structure on X whenever this class vanishes, ω2(X) = 0.

Read it in PDF

Take me to the blog index

Take me home
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