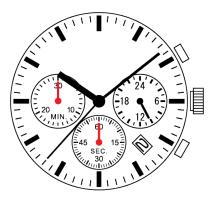
Torsors and cocycles *Guillermo Gallego May 9, 2020*

In my last post I mentioned that first Čech cohomology classes of a sheaf \mathcal{G} of (maybe non-abelian) groups admit a geometric interpretation in terms of \mathcal{G} -torsors. In this post I am going to introduce the notion of a \mathcal{G} -torsor over a topological space X, and show how the set of equivalence classes of \mathcal{G} -torsors on X can be identified with $H^1(X, \mathcal{G})$.



The action groupoid

Before I talk about torsors, let me introduce a very simple concept, but that will be very useful in this and other posts. Take any left action $G \times S \to S$ of a group G on a set S. To this action we can associate its *action groupoid*, which is the category [S, G] whose objects are precisely the elements of the set S and, for every $x, y \in S$, the set of morphisms from x to y is

$$Mor_{[S,G]}(x,y) = \{g \in G : g \cdot x = y\}.$$

This is clearly a groupoid since every morphism g is an isomorphism, with inverse given by g^{-1} . The moduli set of this category (that is, its set of isomorphism classes) is simply the set of orbits S/G.

In the last post we saw an example of a group action. Recall that for any open covering \mathfrak{U} of a topological space X and for any sheaf of groups \mathcal{G} over X, we had that an action of 0-cochains on 1-cochains by "conjugation":

$$C^{0}(\mathfrak{U},\mathcal{G}) \times C^{1}(\mathfrak{U},\mathcal{G}) \longrightarrow C^{1}(\mathfrak{U},\mathcal{G})$$
$$((f_{U})_{U \in \mathfrak{U}}, (g_{UV})_{U < V \in \mathfrak{U}}) \longmapsto (f_{U}g_{UV}f_{V}^{-1})_{U < V \in \mathfrak{U}}$$

Moreover, we saw that this action respects cocycles. Now, as in the last post, we can use refinement maps to define the sets $C^0(X, \mathcal{G})$, $C^1(X, \mathcal{G})$ and $Z^1(X, \mathcal{G})$ as limits by refinement. Suppose that we have some element of $Z^1(X, \mathcal{G})$ represented by a pair (\mathfrak{U}, g) , with $g \in Z^1(\mathfrak{U}, \mathcal{G})$ and some element of $C^0(X, \mathcal{G})$ represented by a nother pair (\mathfrak{V}, f) . We can take a common refinement of both open covers by defining

$$\mathfrak{W} = \{ U \cap V : U \in \mathfrak{U}, V \in \mathfrak{V} \}$$

(which is of course an open cover, since every point is in some U and in some V) with refinement maps given by

$$\mathfrak{W} \longrightarrow \mathfrak{U}$$
$$U \cap V \longmapsto U$$

(analogously for $\mathfrak{W} \to \mathfrak{V}$). Thus, for the previously chosen elements we can take representatives $g \in Z^1(\mathfrak{W}, \mathcal{G})$ and $f \in C^0(\mathfrak{W}, \mathcal{G})$ and define

$$f \cdot g = (f_U g_{UV} f_V^{-1})_{U < V \in \mathfrak{W}}$$

In conclusion, we have just defined an action of the group $C^0(X, \mathcal{G})$ in the set $Z^1(X, \mathcal{G})$ (of course, in the same way we can define an action on C^1 , but we are particularly interested in this one). Moreover, the good properties of the direct limit guarantee that the set of orbits is precisely $H^1(X, \mathcal{G})$.

We can now consider the action groupoid $[Z^1(X, \mathcal{G}), C^0(X, \mathcal{G})]$ associated to this action, whose moduli set is the Čech cohomology set $H^1(X, \mathcal{G})$. What we are going to do now is to give an interpretation of this action groupoid in terms of \mathcal{G} -torsors.

Torsors

As above, let X be a topological space and \mathcal{G} a sheaf of groups over X.

Definition 1. A *G*-torsor is a sheaf of sets \mathcal{F} on X endowed with an action $\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that

- 1. whenever $\mathcal{F}(U)$ is nonempty, the action $\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ is free and transitive, and
- 2. for every $x \in X$, the stalk \mathcal{F}_x is nonempty.

A morphism of \mathcal{G} -torsors $\mathcal{F} \to \mathcal{F}'$ is simply a morphism of sheaves compatible with the \mathcal{G} -actions (we say that it is \mathcal{G} -equivariant).

More precisely, given a morphism of \mathcal{G} -torsors $\varphi : \mathcal{F} \to \mathcal{F}'$, being \mathcal{G} -equivariant means that, if $\mathcal{F}(U)$ is nonempty, for every $p \in \mathcal{F}(U)$ we have

$$\varphi_U(g \cdot p) = g \cdot \varphi_U(p).$$

The best way to unravel this definition is by looking at **examples**. The simplest example of a \mathcal{G} -torsor is the *trivial* \mathcal{G} -torsor, which is $\mathcal{F} = \mathcal{G}$ with the natural action given by the group operation. A key fact is now the following:

Proposition 1. Let \mathcal{F} be a \mathcal{G} -torsor. If \mathcal{F} admits a global section, that is, if $\mathcal{F}(X)$ is nonempty, then it is isomorphic to the trivial \mathcal{G} -torsor.

Proof. Choose $f \in \mathcal{F}(X)$. Since $f|_U \in \mathcal{F}(U)$ for every open subset $U \subset X$, the action $\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ is free and transitive. Therefore, every $h_U \in \mathcal{F}(U)$ can be written in a unique way as $h_U = g_U \cdot f|_U$, for $g_U \in \mathcal{G}(U)$. Thus, the map

$$\begin{aligned} \mathcal{F}(U) &\longrightarrow \mathcal{G}(U) \\ h_U &\longmapsto g_U, \end{aligned}$$

which is clearly equivariant, defines a sheaf isomorphism. \blacksquare

Note now that since for every $x \in X$, we have that $\mathcal{F}_x \neq \emptyset$, there is an open cover \mathfrak{U} of X such that, for every $U \in \mathfrak{U}$, the set $\mathcal{F}(U)$ is nonempty. Therefore, on every $U \in \mathfrak{U}$, the sheaf $\mathcal{F}|_U$ is isomorphic to the trivial $\mathcal{G}|_U$ -torsor. In conclusion, what property 2 in the definition of \mathcal{G} -torsor actually means is that every \mathcal{G} -torsor is, in some way, "locally trivial". The open cover \mathfrak{U} is called a *trivializing cover*.

There are other examples of of \mathcal{G} -torsors that the reader could be familiar with. To introduce these examples, first consider a topological group G. Associated to this group we can define two different sheaves. One is the *sheaf of G-valued functions*, which we denote simply by G, and is defined by

 $G(U) = \{$ Continuous maps $U \to G \}.$

The other one is the *sheaf of locally constant* G-valued functions, denoted by \underline{G} , and defined by

 $\underline{G}(U) = \{ \text{Continuous maps } U \to G \text{ that are locally constant} \}.$

Note that these two sheaves are essentially different, although they coincide if the group G is endowed with the discrete topology. Now, G-torsors are best known as *principal* G-bundles (or rather, as their sheaves of sections). On the other hand \underline{G} -torsors can be identified with G-covering spaces. I will say a lot about these two examples in future posts. If the reader is familiar with principal bundles, maybe it is useful for them to think of a \mathcal{G} -torsor as a generalization of a principal bundle in the sense that the structure group depends continuously on the base point.

Now, let us see how there is a groupoid naturally associated with \mathcal{G} -torsors:

Proposition 2. Every morphism of \mathcal{G} -torsors is an isomorphism.

Proof. Consider $\varphi : \mathcal{F} \to \mathcal{F}'$ a morphism of \mathcal{G} -torsors. First, we will see that the map is injective. Suppose that there are $p_1, p_2 \in \mathcal{F}(U)$ such that $\varphi_U(p_1) = \varphi_U(p_2)$. Since the action on $\mathcal{F}(U)$ is transitive and free, there exists a unique $g \in \mathcal{G}(U)$ such that $p_1 = g \cdot p_2$ and, since φ is equivariant, $\varphi_U(p_1) = g \cdot \varphi_U(p_2)$. But the group $\mathcal{G}(U)$ also acts freely and transitively on $\mathcal{F}'(U)$, so g = 1 and $p_1 = p_2$. On the other hand, to see that it is surjective take any element $p \in \mathcal{F}(U)$. Since the action is transitive we can write any other element $p' \in \mathcal{F}(U)$ as $p' = g \cdot \varphi_U(p)$, for some $g \in \mathcal{G}(U)$. Therefore, since φ is equivariant, $p' = \varphi_U(g \cdot p)$.

What we have just shown is that if we consider the category whose objects are \mathcal{G} -torsors and whose morphisms are morphisms of \mathcal{G} -torsors, this category is in fact a groupoid. The main purpose of this post is to show that this groupoid is equivalent to the action groupoid $[Z^1(X,\mathcal{G}), C^0(X,\mathcal{G})]$. In particular, this equivalence will yield a bijective correspondence between isomorphism classes of \mathcal{G} -torsors and cohomology classes in $H^1(X,\mathcal{G})$.

Transition functions

The way to obtain a Čech cocycle from a \mathcal{G} -torsor is by considering *transition functions*. Consider a \mathcal{G} -torsor \mathcal{F} and a trivializing cover \mathfrak{U} of \mathcal{F} . Now, pick a section $s_U \in \mathcal{F}(U)$ on each $U \in \mathfrak{U}$ (I guess you need to use the Axiom of Choice here, but who cares –besides, we already used it to define cochains–). Now, for every two open sets $U, V \in \mathfrak{U}$, since the action of $\mathcal{G}(U \cap V)$ on $\mathcal{F}(U \cap V)$ is transitive, there must exist some cochain $g = (g_{UV})_{U < V \in \mathfrak{U}} \in C^1(\mathfrak{U}, \mathcal{G})$ such that

 $s_U|_{U\cap V} = g_{UV}s_V|_{U\cap V}.$

Moreover, this cochain is a cocycle since

$$g_{UV}g_{VW}s_W = g_{UV}s_V = s_U = g_{UW}s_W.$$

Thus, to any \mathcal{G} torsor \mathcal{F} we can associate a cocycle $g \in Z^1(\mathfrak{U}, \mathcal{G})$ for some open cover \mathfrak{U} of X. This cocycle is called a *set of transition functions* of \mathcal{F} .

The choice of transition functions is not canonical, since it depends on the choice of the sections s_U . However, if we pick other sections $s'_U \in \mathcal{F}(U)$ on each $U \in \mathfrak{U}$, since the action is transitive, we can write each s'_U as $s'_U = f_U s_U$, for some $f_U \in \mathcal{G}(U)$. Therefore, if we consider the cocycle g' defined by $s'_U = g'_{UV} s'_V$, we have

$$f_U s_U = s'_U = g'_{UV} s'_V = g'_{UV} f_V s_V$$

so $g'_{UV} = f_U g_{UV} f_V^{-1}$. The same argument shows that if $\varphi : \mathcal{F} \to \mathcal{F}'$ is a morphism of \mathcal{G} -torsors, and given a choice of the s_U and thus of the cocycle g, this cocycle and the cocycle g' determined by the $\varphi_U(s_U)$ are related by a cochain $f \in C^0(\mathfrak{U}, \mathcal{F})$ in the same way, $g'_{UV} = f_U g_{UV} f_V^{-1}$.

By choosing a trivializing cover for any \mathcal{G} -torsor and a set of transition functions, after taking the equivalence class in the direct limit we can define a morphism of groupoids by the following functor

$$\{\mathcal{G}\text{-torsors}\} \longrightarrow [Z^1(X,\mathcal{G}), C^0(X,\mathcal{G})]$$
$$\mathcal{F} \longmapsto \{\text{Transition functions of } \mathcal{F}\},\$$

which maps any morphism of \mathcal{G} -torsors to the 0-cochain defined above.

Proposition 3. This functor is an equivalence of categories. In particular, the set $H^1(X, \mathcal{G})$ classifies isomorphism classes of \mathcal{G} -torsors.

Proof. Clearly, the functor is fully faithful since the choice of open covering \mathfrak{U} and of $f_U \in \mathcal{G}(U)$, for $U \in \mathfrak{U}$ determines φ as $\varphi_U(s_U) = f_U s_U$, for $s_U \in \mathcal{F}(U)$. Thus, it suffices to see that the functor is essentially surjective. This means that what we have to show is that given a cocycle in $Z^1(X, \mathcal{G})$, we can construct a \mathcal{G} -torsor whose transition functions are given by this cocycle. The way of doing this is a standard procedure which appears in a lot of places. The idea is to define the torsor locally as \mathcal{G} and then use the cocycle to "glue" the different patches. More precisely, we choose a representative (\mathfrak{U}, g) , with $g \in Z^1(\mathfrak{U}, \mathcal{G})$, of the chosen cocycle and define a presheaf

$$\mathcal{F}(U) = \coprod_{V \in \mathfrak{U}} \mathcal{G}(U \cap V) / \sim_{\mathbb{T}}$$

with the equivalence relation ~ given as follows. We say that two sections $f \in \mathcal{G}(U \cap V)$ and $f' \in \mathcal{G}(U \cap V')$, with $V \cap V' \neq \emptyset$, are related if

$$f|_{U\cap V\cap V'} = g_{VV'}f'|_{U\cap V\cap V'}.$$

This presheaf verifies the sheaf condition by construction and it is a \mathcal{G} -torsor since on every $U \in \mathfrak{U}$ it is the trivial \mathcal{G} -torsor. Again by construction, the cocycle g gives the transition functions of \mathcal{F} .

A nice application

For the well known cases associated to G topological group, the above result is telling us that (isomorphism classes of) principal G-bundles are classified by the cohomology set $H^1(X, G)$ and that G-covering spaces are classified by $H^1(X, \underline{G})$.

In a future post, I will explain how the correspondence between G-covering spaces and $H^1(X,\underline{G})$ gives a nice and maybe "non-standard" approach at the basic results of Algebraic Topology. As for now, I am going to show how the correspondence between principal G-bundles and $H^1(X,G)$ can be combined with the results of my last post to prove a nice fact of principal bundle theory. What we are going to consider now is the problem of lifting the structure group to a group extension. In general, for any group G we say that another group \hat{G} is an *extension* of G if there is a surjective homomorphism $\hat{G} \to G$. More generally, if $1 \to A \to \hat{G} \to G \to 1$ is a short exact sequence of groups, we say that \hat{G} is an *extension of* G by A. Moreover, if the homomorphism $A \to \hat{G}$ factors through the centre of \hat{G} , we say that the extension \hat{G} is a *central extension*. In particular, if \hat{G} is a central extension, the group A is abelian.

The lifting problem consists on, given a central extension $1 \to A \to \hat{G} \to G \to 1$ and a principal *G*-bundle *E* over a topological space *X*, constructing a principal \hat{G} -bundle \hat{E} "lifting" *E*. In our terms, we can regard $\hat{G} \to G$ as a morphism of sheaves, that induces a map $H^1(X, \hat{G}) \to H^1(X, G)$. What we want to know is when this map is surjective. Recall now from my last post that, since *A* is abelian, $H^2(X, A)$ is defined and the short exact sequence $1 \to A \to \hat{G} \to G \to 1$ induces in cohomology the exact sequence

$$H^1(X,\hat{G}) \to H^1(X,G) \to H^2(X,A).$$

Therefore, the map $H^1(X, \hat{G}) \to H^1(X, G)$ is surjective if and only if $H^2(X, A)$ is trivial.

Example. A nice example where this lifting problem is interesting is given by spin structures. Let X be an *n*-dimensional Riemannian manifold. Its tangent bundle TX is a vector bundle and, by considering its *frame bundle* we can regard it as a principal $GL(n, \mathbb{R})$ -bundle. Now, the Riemannian metric gives a reduction of the structure group to a principal SO(n)-bundle. A *spin structure* on X is a lift of the structure group from this principal SO(n)-bundle to the universal covering space $Spin(n) \to SO(n)$. It is well known that SO(n) is doubly connected. For example, SO(3) is diffeomorphic to the real projective space \mathbb{RP}^3 and Spin(3) = SU(2) is diffeomorphic to the 3-sphere \mathbb{S}^3 . Therefore, the covering homomorphism $Spin(n) \to SO(n)$ is in fact a central extension

$$1 \to \mathbb{Z}/(2) \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1.$$

We conclude from this that the obstruction for defining spin structures n X will be given by its Čech cohomology set $H^2(X, \mathbb{Z}/(2))$. If $g \in H^1(X, \mathrm{SO}(n))$ denotes the cocycle associated to the tangent bundle, the element $\delta(g) \in H^2(X, \mathbb{Z}/(2))$ is called the *second Stiefel-Whitney class* of X, denoted $\omega_2(X)$. We will be able to define a spin structure on X whenever this class vanishes, $\omega_2(X) = 0$.

Read it in PDF

Take me to the blog index

Take me home